Fast Discriminative Stochastic Neighbor Embedding Analysis
نویسندگان
چکیده
Feature is important for many applications in biomedical signal analysis and living system analysis. A fast discriminative stochastic neighbor embedding analysis (FDSNE) method for feature extraction is proposed in this paper by improving the existing DSNE method. The proposed algorithm adopts an alternative probability distribution model constructed based on its K-nearest neighbors from the interclass and intraclass samples. Furthermore, FDSNE is extended to nonlinear scenarios using the kernel trick and then kernel-based methods, that is, KFDSNE1 and KFDSNE2. FDSNE, KFDSNE1, and KFDSNE2 are evaluated in three aspects: visualization, recognition, and elapsed time. Experimental results on several datasets show that, compared with DSNE and MSNP, the proposed algorithm not only significantly enhances the computational efficiency but also obtains higher classification accuracy.
منابع مشابه
Dimensionality Reduction by Supervised Neighbor Embedding Using Laplacian Search
Dimensionality reduction is an important issue for numerous applications including biomedical images analysis and living system analysis. Neighbor embedding, those representing the global and local structure as well as dealing with multiple manifolds, such as the elastic embedding techniques, can go beyond traditional dimensionality reduction methods and find better optima. Nevertheless, existi...
متن کاملPixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding
Embedding and visualizing large-scale high-dimensional data in a two-dimensional space is an important problem since such visualization can reveal deep insights out of complex data. Most of the existing embedding approaches, however, run on an excessively high precision, ignoring the fact that at the end, embedding outputs are converted into coarsegrained discrete pixel coordinates in a screen ...
متن کاملDoubly Stochastic Neighbor Embedding on Spheres
Recently, Stochastic Neighbor Embedding (SNE) methods have widely been applied in data visualization. These methods minimize the divergence between the pairwise similarities of highand low-dimensional data. Despite their popularity, the current SNE methods experience the “crowding problem” when the data include highly imbalanced similarities. This implies that the data points with higher total ...
متن کاملHeavy-Tailed Symmetric Stochastic Neighbor Embedding
Stochastic Neighbor Embedding (SNE) has shown to be quite promising for data visualization. Currently, the most popular implementation, t-SNE, is restricted to a particular Student t-distribution as its embedding distribution. Moreover, it uses a gradient descent algorithm that may require users to tune parameters such as the learning step size, momentum, etc., in finding its optimum. In this p...
متن کاملEfficient Algorithms for t-distributed Stochastic Neighborhood Embedding
Abstract. t-distributed Stochastic Neighborhood Embedding (t-SNE) is a method for dimensionality reduction and visualization that has become widely popular in recent years. Efficient implementations of t-SNE are available, but they scale poorly to datasets with hundreds of thousands to millions of high dimensional data-points. We present Fast Fourier Transformaccelerated Interpolation-based t-S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013