Fast Discriminative Stochastic Neighbor Embedding Analysis

نویسندگان

  • Jianwei Zheng
  • Hong Qiu
  • Xinli Xu
  • Wanliang Wang
  • Qiongfang Huang
چکیده

Feature is important for many applications in biomedical signal analysis and living system analysis. A fast discriminative stochastic neighbor embedding analysis (FDSNE) method for feature extraction is proposed in this paper by improving the existing DSNE method. The proposed algorithm adopts an alternative probability distribution model constructed based on its K-nearest neighbors from the interclass and intraclass samples. Furthermore, FDSNE is extended to nonlinear scenarios using the kernel trick and then kernel-based methods, that is, KFDSNE1 and KFDSNE2. FDSNE, KFDSNE1, and KFDSNE2 are evaluated in three aspects: visualization, recognition, and elapsed time. Experimental results on several datasets show that, compared with DSNE and MSNP, the proposed algorithm not only significantly enhances the computational efficiency but also obtains higher classification accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction by Supervised Neighbor Embedding Using Laplacian Search

Dimensionality reduction is an important issue for numerous applications including biomedical images analysis and living system analysis. Neighbor embedding, those representing the global and local structure as well as dealing with multiple manifolds, such as the elastic embedding techniques, can go beyond traditional dimensionality reduction methods and find better optima. Nevertheless, existi...

متن کامل

PixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding

Embedding and visualizing large-scale high-dimensional data in a two-dimensional space is an important problem since such visualization can reveal deep insights out of complex data. Most of the existing embedding approaches, however, run on an excessively high precision, ignoring the fact that at the end, embedding outputs are converted into coarsegrained discrete pixel coordinates in a screen ...

متن کامل

Doubly Stochastic Neighbor Embedding on Spheres

Recently, Stochastic Neighbor Embedding (SNE) methods have widely been applied in data visualization. These methods minimize the divergence between the pairwise similarities of highand low-dimensional data. Despite their popularity, the current SNE methods experience the “crowding problem” when the data include highly imbalanced similarities. This implies that the data points with higher total ...

متن کامل

Heavy-Tailed Symmetric Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) has shown to be quite promising for data visualization. Currently, the most popular implementation, t-SNE, is restricted to a particular Student t-distribution as its embedding distribution. Moreover, it uses a gradient descent algorithm that may require users to tune parameters such as the learning step size, momentum, etc., in finding its optimum. In this p...

متن کامل

Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding

Abstract. t-distributed Stochastic Neighborhood Embedding (t-SNE) is a method for dimensionality reduction and visualization that has become widely popular in recent years. Efficient implementations of t-SNE are available, but they scale poorly to datasets with hundreds of thousands to millions of high dimensional data-points. We present Fast Fourier Transformaccelerated Interpolation-based t-S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013